A Data-Intensive Approach to Address Food Sustainability: Integrating Optic and Microwave Satellite Imagery for Developing Long-Term Global Cropping Intensity and Sowing Month from 2001 to 2015

Author:

Sakti Anjar DimaraORCID,Takeuchi WataruORCID

Abstract

It is necessary to develop a sustainable food production system to ensure future food security around the globe. Cropping intensity and sowing month are two essential parameters for analyzing the food–water–climate tradeoff as food sustainability indicators. This study presents a global-scale analysis of cropping intensity and sowing month from 2000 to 2015, divided into three groups of years. The study methodology integrates the satellite-derived normalized vegetation index (NDVI) of 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) and daily land-surface-water coverage (LSWC) data obtained from The Advanced Microwave Scanning Radiometer (AMSR-E/2) in 1-km aggregate pixel resolution. A fast Fourier transform was applied to normalize the MODIS NDVI time-series data. By using advanced methods with intensive optic and microwave time-series data, this study set out to anticipate potential dynamic changes in global cropland activity over 15 years representing the Millennium Development Goal period. These products are the first global datasets that provide information on crop activities in 15-year data derived from optic and microwave satellite data. The results show that in 2000–2005, the total global double-crop intensity was 7.1 million km2, which increased to 8.3 million km2 in 2006–2010, and then to approximately 8.6 million km2 in 2011–2015. In the same periods, global triple-crop agriculture showed a rapid positive growth from 0.73 to 1.12 and then 1.28 million km2, respectively. The results show that Asia dominated double- and triple-crop growth, while showcasing the expansion of single-cropping area in Africa. The finer spatial resolution, combined with a long-term global analysis, means that this methodology has the potential to be applied in several sustainability studies, from global- to local-level perspectives.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3