Dynamic Mechanical Properties and Modified Johnson-Cook Model Considering Recrystallization Softening for Nickel-Based Powder Metallurgy Superalloys

Author:

Ling Chen12,Ren Xiaoping12,Wang Xuepeng12,Li Yinghao12,Liu Zhanqiang12ORCID,Wang Bing12,Zhao Jinfu12

Affiliation:

1. School of Mechanical Engineering, Shandong University, Jinan 250061, China

2. Key National Demonstration Center for Experimental Mechanical Engineering Education, Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MQE, Jinan 250014, China

Abstract

The material undergoes high temperature and high strain rate deformation process during the cutting process, which may induce the dynamic recrystallization behavior and result in the evolution of dynamic mechanical properties of the material to be machined. In this paper, the modified Johnson-Cook (J-C) model for nickel-based powder metallurgy superalloy considering dynamic recrystallization behavior in high strain rate and temperature is proposed. The dynamic mechanical properties of the material under different strain rates and temperature conditions are obtained by quasi-static compression test and split Hopkinson pressure bar (SHPB) test. The coefficients of the modified J-C model are obtained by the linear regression method. The modified model is verified by comparison with experimental and model prediction results. The results show that the modified J-C model proposed in this paper can accurately describe the mechanical properties of nickel-based powder metallurgy superalloys at high temperatures and high strain rates. This provides help for studying the cutting mechanism and finite element simulation of nickel-based powder metallurgy superalloy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Shandong Provincial Key Research and Development Program

Natural Science Foundation of Shandong Province

Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University and Taishan Scholar Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3