Low-Power Phototransistor with Enhanced Visible-Light Photoresponse and Electrical Performances Using an IGZO/IZO Heterostructure

Author:

Kim Yu Bin1,Jeong Jun Hyung12,Park Min Ho12,Yun Jung Min1,Ma Jin Hyun12,Ha Hyoun Ji12,Kang Seong Jae12,Kang Seong Jun12ORCID

Affiliation:

1. Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea

2. Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea

Abstract

In this study, we demonstrated the effective separation of charge carriers within the IGZO/IZO heterostructure by incorporating IZO. We have chosen IGZO for its high mobility and excellent on–off switching behavior in the front channel of our oxide–oxide heterostructure. Similarly, for an additional oxide layer, we have selected IZO due to its outstanding electrical properties. The optimized optoelectronic characteristics of the IGZO/IZO phototransistors were identified by adjusting the ratio of In:Zn in the IZO layer. As a result, the most remarkable traits were observed at the ratio of In:Zn = 8:2. Compared to the IGZO single-layer phototransistor, the IGZO/IZO(8:2) phototransistor showed improved photoresponse characteristics, with photosensitivity and photoresponsivity values of 1.00 × 107 and 89.1 AW−1, respectively, under visible light wavelength illumination. Moreover, the electrical characteristics of the IGZO/IZO(8:2) transistor, such as field effect mobility (μsat) and current on/off ratio (Ion/Ioff), were highly enhanced compared to the IGZO transistor. The μsat and Ion/Ioff were increased by about 2.1 times and 2.3 times, respectively, compared to the IGZO transistor. This work provides an approach for fabricating visible-light phototransistors with elevated optoelectronic properties and low power consumption based on an oxide–oxide heterostructure. The phototransistor with improved performance can be applied to applications such as color-selective visible-light image sensors and biometric sensors interacting with human–machine interfaces.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3