Secondary Phase Precipitation in Fe-22Mn-9Al-0.6C Low-Density Steel during Continuous Cooling Process

Author:

Zhou Yihao1,Man Tinghui1,Wang Jun1,Zhao Hongshan1ORCID,Dong Han1

Affiliation:

1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

Abstract

Secondary phase precipitation in Fe-22Mn-9Al-0.6C low-density steel was investigated during a continuous cooling process with different cooling rates through a DIL805A thermal expansion dilatometer, and the changes in microstructures and hardness by different cooling rates were discussed. The results showed that the matrix of the Fe-22Mn-9Al-0.6C was composed of austenite and δ-ferrite; moreover, the secondary phases included κ-carbide, β-Mn and DO3 at room temperature. The precipitation temperatures of 858 °C, 709 °C and 495 °C corresponded to the secondary phases B2, κ-carbide and β-Mn, respectively, which were obtained from the thermal expansion curve by the tangent method. When the cooling rate was slow, it had enough time to accommodate C-poor and Al-rich regions in the austenite due to amplitude modulation decomposition. Furthermore, the Al enrichment promoted δ-ferrite formation. Meanwhile, the subsequent formation of κ-carbide and β-Mn occurred through the continuous diffusion of C and Mn into austenite. In addition, the hardness of austenite was high at 0.03 °C/s due to the κ-carbide and β-Mn production and C enrichment, and it was inversely proportional to the cooling rate. It can be concluded that the presence of κ-carbide, DO3 and β-Mn produced at the austenitic/ferrite interface when the cooling rate was below 0.1 °C/s resulted in κ-carbide and β-Mn precipitating hardly at cooling rates exceeding 0.1 °C/s, which provides a guideline for the industrial production of Fe-Mn-Al-C low-density steel in the design of the hot working process.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Reference38 articles.

1. A Literature Review of Age Hardening Fe-Mn-Al-C Alloys;Howell;Iron Steel,2009

2. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties;Kim;Sci. Technol. Adv. Mater.,2013

3. Low-density steels;Suh;Scr. Mater.,2013

4. Low-density steels;Rana;Jom,2014

5. Frommeyer, G., and Bausch, M. (2008, January 4–6). Ultra high-strength and ductile Fe-Mn-Al-C light-weight steels (MnAl-steels). Proceedings of the RFCS Technical Group TGS7 Meeting, Harviala, Finland.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3