Fatigue Life Prediction Model of FRP–Concrete Interface Based on Gene Expression Programming

Author:

Zhang Zhimei1,Huo Yinglong1

Affiliation:

1. Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China

Abstract

Under fatigue loading, the interfacial fatigue life of fiber-reinforced polymer(FRP)–concrete is an important index for the analysis of the fatigue performance of reinforced concrete beams strengthened with FRP materials and the evaluation of the reinforcement effect. To solve the problems of the inconsistent and limited accuracy of existing fatigue life prediction models, gene expression programming (GEP) was used to study the interfacial fatigue life of FRP–concrete. Firstly, 219 sets of interfacial fatigue test data were collected, which included two kinds of reinforcement methods, namely, externally bonded (EB) reinforcement and near-surface-mounted (NSM) reinforcement; secondly, Pearson correlation analysis was used to determine the key factors affecting the fatigue life, and then GEP was used to explore the influence of different input forms on the prediction accuracy of the model. Fatigue life calculation formulas applicable to the two kinds of reinforcement methods, i.e., EB and NSM, were established, and a specific calculation formula was established. The model was subjected to parameter sensitivity analysis and variable importance analysis and was found to reflect the intrinsic relationship between the fatigue life and various factors. Finally, the GEP model was compared with the models proposed by other researchers. Five statistical indices, such as the coefficient of determination and the average absolute error, were selected to assess the model, and the results show that the GEP model has higher prediction accuracy than other models, with a coefficient of determination of 0.819, and indicators such as the average absolute error are also lower than those of the rest of the models.

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3