Deep Learning Approach with LSTM for Daily Streamflow Prediction in a Semi-Arid Area: A Case Study of Oum Er-Rbia River Basin, Morocco

Author:

Nifa Karima,Boudhar AbdelghaniORCID,Ouatiki HamzaORCID,Elyoussfi HaytamORCID,Bargam Bouchra,Chehbouni AbdelghaniORCID

Abstract

Daily hydrological modelling is among the most challenging tasks in water resource management, particularly in terms of streamflow prediction in semi-arid areas. Various methods were applied in order to deal with this complex phenomenon, but recently data-driven models have taken a better space, given their ability to solve prediction problems in time series. In this study, we have employed the Long Short-Term Memory (LSTM) network to simulate the daily streamflow over the Ait Ouchene watershed (AIO) in the Oum Er-Rbia river basin in Morocco, based on a temporal sequence of in situ and remotely sensed hydroclimatic data ranging from 2001 to 2010. The analysis adopted in this work is based on three-dimension input required by the LSTM model (1); the input samples used three splitting approaches: 70% of the dataset as training, splitting the data considering the hydrological year and the cross-validation method; (2) the sequence length; (3) and the input features using two different scenarios. The prediction results demonstrate that the LSTM performs poorly using the default data input scenario, whereas the best results during the testing were found in a sequence length of 30 days using approach 3 (R2 = 0.58). In addition, the LSTM fed with the lagged data input scenario using the Forward Feature Selection (FFS) method provides high performance accuracy using approach 2 (R2 = 0.84) in a sequence length of 20 days. Eventually, in applications related to water resources management where data are limited, the use of the deep learning technique is able to create high predictive accuracy, which can be enhanced with the right combination subset of features by using FFS.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3