Abstract
Currently, a large amount of information is presented graphically. However, visually impaired individuals do not have access to visual information. Instead, they depend on tactile illustrations—raised lines, textures, and elevated graphics that are felt through touch—to perceive geometric and various other objects in textbooks. Tactile graphics are considered an important factor for students in the science, technology, engineering, and mathematics fields seeking a quality education because teaching materials in these fields are frequently conveyed with diagrams and geometric figures. In this paper, we conducted a systematic literature review to identify the current state of research in the field of automatic tactile graphics generation. Over 250 original research papers were screened and the most appropriate studies on automatic tactile graphic generation over the last six years were classified. The reviewed studies explained numerous current solutions in static and dynamic tactile graphics generation using conventional computer vision and artificial intelligence algorithms, such as refreshable tactile displays for education and machine learning models for tactile graphics classification. However, the price of refreshable tactile displays is still prohibitively expensive for low- and middle-income users, and the lack of training datasets for the machine learning model remains a problem.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献