Bio-Fabrication of Bio-Inspired Silica Nanomaterials from Orange Peels in Combating Oxidative Stress

Author:

Abomughaid Mosleh MohammadORCID

Abstract

Silica nanoparticles were synthesized using the aqueous extract of orange peels by the green chemistry approach and simple method. The physicochemical properties such as optical and chemical banding of as-synthesized silica nanoparticles were analyzed with UV–visible spectroscopy and Fourier transform infrared spectroscopy. Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis and X-ray diffraction analysis were employed to confirm the shape, size and elemental purities of the silica nanoparticles. The thermal stability and mass loss of the silica nanoparticles was examined using thermogravimetric analysis and zeta potential analysis. The surface plasmon resonance band of the silica nanoparticle was obtained in the wavelength of 292 nm. Silica nanoparticles with a spherical and amorphous nature and an average size of 20 nm were produced and confirmed by X-ray diffraction and Scanning Electron Microscopy. The zeta potential of the silica nanoparticles was −25.00 mV. The strong and broad bands were located at 457, 642 and 796 cm−1 in the Fourier transform infrared spectra of the silica nanoparticles, associated with the Si–O bond. All the results of the present investigation confirmed and proved that the green synthesized silica nanoparticles were highly stable, pure and spherical in nature. In addition, the antioxidant activity of the green synthesized orange peel extract mediated by the silica nanoparticles was investigated with a DPPH assay. The antioxidant assay revealed that the synthesized silica nanoparticles had good antioxidant activity. In the future, green synthesized silica nanoparticles may be used for the production of nano-medicine.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3