Ultra-Fast Construction of Novel S-Scheme CuBi2O4/CuO Heterojunction for Selectively Photocatalytic CO2 Conversion to CO

Author:

Shi Weina,Qiao Xiu,Wang JichaoORCID,Zhao Miao,Ge Hongling,Ma Jingjing,Liu Shanqin,Zhang Wanqing

Abstract

Herein, step-scheme (S-scheme) CuBi2O4/CuO (CBO/CuO) composite films were successfully synthesized on glass substrates by the ultra-fast spraying-calcination method. The photocatalytic activities of the obtained materials for CO2 reduction in the presence of H2O vapor were evaluated under visible light irradiation (λ > 400 nm). Benefiting from the construction of S-scheme heterojunction, the CO, CH4 and O2 yields of the optimal CBO/CuO composite reached 1599.1, 5.1 and 682.2 μmol/m2 after irradiation for 9 h, and the selectivity of the CO product was notably enhanced from below 18.5% to above 98.5% compared with those of the bare samples. In the sixth cycling experiment, the yields of main products decreased by less than 15%, and a high CO selectivity was still kept. The enhanced photocatalytic performance of CO2 reduction was attributed to the efficient separation of photogenerated charge carriers. Based on the photocatalytic activity, band structure and in situ-XPS results, the S-scheme charge transfer mechanism was conformed. The study provides an insight into the design of S-scheme photocatalysts for selective CO2 conversion.

Funder

National Natural Science Foundation of China

Key Scientific and Technological Project of Henan Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3