Abstract
A new nanocomposite based on Cloisite 30B clay modified with ZnO and Ag2O nanoparticles (Cloisite 30B/ZnO/Ag2O) was synthesized as an effective catalyst in the sono-photocatalytic process of crystal violet (CV) and methylene blue (MB) dyes simultaneously. The characteristics and catalytic activity of Cloisite 30B/ZnO/Ag2O nanocomposite were investigated under different conditions. The specific active surface for Cloisite 30B/ZnO/Ag2O nanocomposite was 18.29 m2/g. Additionally, the catalytic activity showed that Cloisite 30B/ZnO/Ag2O nanocomposite (CV: 99.21%, MB: 98.43%) compared to Cloisite 30B/Ag2O (CV: 85.38%, MB: 83.62%) and Ag2O (CV: 68.21%, MB: 66.41%) has more catalytic activity. The catalytic activity of Cloisite 30B/ZnO/Ag2O using the sono-photocatalytic process had the maximum efficiency (CV: 99.21%, MB: 98.43%) at pH 8, time of 50 min, amount of 40 mM H2O2, catalyst dose of 0.5 g/L, and the concentration of ‘CV + MB’ of 5 mg/L. The catalyst can be reused in the sono-photocatalytic process for up to six steps. According to the results, •OH and h+ were effective in the degradation of the desired dyes using the desired method. Data followed the pseudo-first-order kinetic model. The method used in this research is an efficient and promising method to remove dyes from wastewater.
Subject
General Materials Science,General Chemical Engineering
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献