Author:
Zheng Kaiyuan,Zhang Zhiyong,Qiu Changzhen
Abstract
The efficient and accurate tracking of a target in complex scenes has always been one of the challenges to tackle. At present, the most effective tracking algorithms are basically neural network models based on deep learning. Although such algorithms have high tracking accuracy, the huge number of parameters and computations in the network models makes it difficult for such algorithms to meet the real-time requirements under limited hardware conditions, such as embedded platforms with small size, low power consumption and limited computing power. Tracking algorithms based on a kernel correlation filter are well-known and widely applied because of their high performance and speed, but when the target is in a complex background, it still can not adapt to the target scale change and occlusion, which will lead to template drift. In this paper, a fast multi-scale kernel correlation filter tracker based on adaptive template updating is proposed for common rigid targets. We introduce a simple scale pyramid on the basis of Kernel Correlation Filtering (KCF), which can adapt to the change in target size while ensuring the speed of operation. We propose an adaptive template updater based on the Mean of Cumulative Maximum Response Values (MCMRV) to alleviate the problem of template drift effectively when occlusion occurs. Extensive experiments have demonstrated the effectiveness of our method on various datasets and significantly outperformed other state-of-the-art methods based on a kernel correlation filter.
Funder
Science and Technology Planning Project of Guangdong Science and Technology Department under Grant Guangdong Key Laboratory of Advanced IntelliSense Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献