Scientometric Analysis of Artificial Intelligence (AI) for Geohazard Research

Author:

Jiang Sheng,Ma JunweiORCID,Liu Zhiyang,Guo Haixiang

Abstract

Geohazard prevention and mitigation are highly complex and remain challenges for researchers and practitioners. Artificial intelligence (AI) has become an effective tool for addressing these challenges. Therefore, for decades, an increasing number of researchers have begun to conduct AI research in the field of geohazards leading to rapid growth in the number of related papers. This has made it difficult for researchers and practitioners to grasp information on cutting-edge developments in the field, thus necessitating a comprehensive review and analysis of the current state of development in the field. In this study, a comprehensive scientometric analysis appraising the state-of-the-art research for geohazard was performed based on 9226 scientometric records from the Web of Science core collection database. Multiple types of scientometric techniques, including coauthor analysis, co-citation analysis, and cluster analysis were employed to identify the most productive researchers, institutions, and hot research topics. The results show that research related to the application of AI in the field of geohazards experienced a period of rapid growth after 2000, with major developments in the field occurring in China, the United States, and Italy. The hot research topics in this field are ground motion, deep learning (DL), and landslides. The commonly used AI algorithms include DL, support vector machine (SVM), and decision tree (DT). The obtained visualization on research networks offers valuable insights and an in-depth understanding of the key researchers, institutions, fundamental articles, and salient topics through animated maps. We believe that this scientometric review offers useful reference points for early-stage researchers and provides valuable in-depth information to experienced researchers and practitioners in the field of geohazard research. This scientometric analysis and visualization are promising for reflecting the global picture of AI-based geohazard research comprehensively and possess potential for the visualization of the emerging trends in other research fields.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3