Detecting Coastal Wetland Degradation by Combining Remote Sensing and Hydrologic Modeling

Author:

He KeqiORCID,Zhang YuORCID,Li WenhongORCID,Sun GeORCID,McNulty Steve

Abstract

Sea-level rise and climate change stresses pose increasing threats to coastal wetlands that are vital to wildlife habitats, carbon sequestration, water supply, and other ecosystem services with global significance. However, existing studies are limited in individual sites, and large-scale mapping of coastal wetland degradation patterns over a long period is rare. Our study developed a new framework to detect spatial and temporal patterns of coastal wetland degradation by analyzing fine-scale, long-term remotely sensed Normalized Difference Vegetation Index (NDVI) data. Then, this framework was tested to track the degradation of coastal wetlands at the Alligator River National Wildlife Refuge (ARNWR) in North Carolina, United States, during the period from 1995 to 2019. We identified six types of coastal wetland degradation in the study area. Most of the detected degradation was located within 2 km from the shoreline and occurred in the past five years. Further, we used a state-of-the-art coastal hydrologic model, PIHM-Wetland, to investigate key hydrologic processes/variables that control the coastal wetland degradation. The temporal and spatial distributions of simulated coastal flooding and saltwater intrusion confirmed the location and timing of wetland degradation detected by remote sensing. The combined method also quantified the possible critical thresholds of water tables for wetland degradation. The remote sensing–hydrologic model integrated scheme proposed in this study provides a new tool for detecting and understanding coastal wetland degradation mechanisms. Our study approach can also be extended to other coastal wetland regions to understand how climate change and sea-level rise impact wetland transformations.

Funder

Duke Graduate Student Training Enhancement Grants (GSTEG) for Summer 2020

Publisher

MDPI AG

Subject

Forestry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3