Deep Learning with Attention Mechanisms for Road Weather Detection

Author:

Samo Madiha,Mafeni Mase Jimiama MosimaORCID,Figueredo GrazzielaORCID

Abstract

There is great interest in automatically detecting road weather and understanding its impacts on the overall safety of the transport network. This can, for example, support road condition-based maintenance or even serve as detection systems that assist safe driving during adverse climate conditions. In computer vision, previous work has demonstrated the effectiveness of deep learning in predicting weather conditions from outdoor images. However, training deep learning models to accurately predict weather conditions using real-world road-facing images is difficult due to: (1) the simultaneous occurrence of multiple weather conditions; (2) imbalanced occurrence of weather conditions throughout the year; and (3) road idiosyncrasies, such as road layouts, illumination, and road objects, etc. In this paper, we explore the use of a focal loss function to force the learning process to focus on weather instances that are hard to learn with the objective of helping address data imbalances. In addition, we explore the attention mechanism for pixel-based dynamic weight adjustment to handle road idiosyncrasies using state-of-the-art vision transformer models. Experiments with a novel multi-label road weather dataset show that focal loss significantly increases the accuracy of computer vision approaches for imbalanced weather conditions. Furthermore, vision transformers outperform current state-of-the-art convolutional neural networks in predicting weather conditions with a validation accuracy of 92% and an F1-score of 81.22%, which is impressive considering the imbalanced nature of the dataset.

Funder

Horizon Centre for Doctoral Training at the University of Nottingham

Microlise

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Deep Learning Advancements in Road Analysis for Autonomous Driving;Applied Sciences;2024-05-30

2. Quality assessment of abdominal CT images: an improved ResNet algorithm with dual-attention mechanism;American Journal of Translational Research;2024

3. Hypothesis Classification of Weather on VGG19 CNN Model Fine-Tuned with the Adam Optimizer;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

4. MASK-CNN-Transformer for real-time multi-label weather recognition;Knowledge-Based Systems;2023-10

5. 3-GWD : A Textural and AI-Based Approach for Real-Time Detection of Weather Disturbances Applied to Autonomous Vehicle;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3