Design and Development of Innovative Steam Injection for High-Temperature Short-Time Liquid Foods

Author:

Sangsom Wilasinee,Inprasit Chouw

Abstract

Jet impingement has been effective in reducing the process time and improvement of product quality in various industrial applications, such as textile and paper drying, electronic cooling, glass quenching and food processing. The current work applied innovative steam injection to liquid food continuous sterilization. The multiple impingement jets of steam and product came together in the impingement tank. The effects were investigated on the Reynolds number, steam temperature and jet-to-target spacing (H/d), sterilization temperature and heat transfer efficiency in water and pineapple juice tests. The Reynolds number was based on the nozzle configuration and liquid flow rate. The study investigated product injection plates formed using two, three or four circular holes (diameter 2 mm), steam injection plates with six, nine or twenty circular holes (diameter 1 mm), steam temperatures of 120, 125 or 130 °C and H/d values of 1, 3, 5 or 7. The different options were tested with water to determine the optimal conditions, and then tested with pineapple juice. The results showed that the optimal conditions from water testing that provided the highest heat transfer efficiency occurred with two jet nozzles, six steam injection plates, a steam temperature of 120 °C and an H/d value of 1.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference34 articles.

1. Bioprocess Engineering Principles;Doran,2013

2. Experience with Direct and Indirect UHT Processing of Milk - A Canadian Viewpoint

3. Continuous Thermal Processing of Foods Pasteurization and UHT Sterilization;Lewis,2000

4. Modeling and Design of Plate Heat Exchanger

5. Continuous Heat Processing;Emond,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3