Industry-Driven versus Natural Groundwater Flow Regime at the Dead Sea Coastal Aquifer

Author:

Levy YehudaORCID,Gvirtzman Haim

Abstract

The coexistence of nature and anthropogenic development requires continuous monitoring and research to address and respond to unforeseen threatening processes that occur with time. This is particularly relevant to the groundwater flow regime in the coastal aquifer adjacent to the Dead Sea, the level of which is dropping, and the industrial evaporation ponds, whose levels are rising. The increasing hydraulic gradient between the two water bodies has produced severe leakage through the pond embankments. To prevent this leakage, a vertical deep sealing wall was built along the embankment. In this study, the overall leakage is calculated by mass balance, and the subsurface leakage component is numerically simulated, based on the mass balance and hydrological observations. Some of the leakage discharges into surface canals and some at the Dead Sea. The leakage volume increased from 20 mcm/year in the 1980s to 100 mcm/year before the sealing wall was built (in 2012), and from 60 mcm/year once the wall was established to 80 mcm/year today. Using the calibrated model, the leakage volume is predicted to increase in the next few decades, mainly through the Ye’elim alluvial fan. Further research effort is needed to come up with new preventive measures.

Funder

Dead Sea Works

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference35 articles.

1. Appraisal and Assessment of World Water Resources

2. Contribution of global groundwater depletion since 1900 to sea-level rise

3. Water for Life: The United Nations World Water Development Report 1,2003

4. Water for Life: The United Nations World Water Development Report 2,2006

5. The Natural Flow Regime

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3