Rapid and Sensitive Quantification of the Pesticide Lindane by Polymer Modified Electrochemical Sensor

Author:

Noori Jafar SafaaORCID,Mortensen John,Geto AlemnewORCID

Abstract

Lindane is documented by the Environmental Protection Agency (EPA) as one of the most toxic registered pesticides. Conventional detection of lindane in the environment requires manual field sampling and complex, time-consuming analytical sample handling relying on skilled labor. In this study, an electrochemical sensing system based on a modified electrode is reported. The system is capable of detecting lindane in aqueous medium in only 20 s. The surface of a conventional carbon electrode is modified with a film of conductive polymer that enables detection of lindane down to 30 nanomolar. The electrode modification procedure is simple and results in a robust sensor that can withstand intensive use. The sensitivity of the sensor is 7.18 µA/µM and the performance was demonstrated in the determination of lindane in spiked ground water. This suggests that the sensor is potentially capable of providing useful readings for decision makers. The rapid and sensitive quantification of lindane in aqueous medium is one step forward to new opportunities for direct, autonomous control of the pesticide level in the environment.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3