CAPTIVE: Constrained Adversarial Perturbations to Thwart IC Reverse Engineering

Author:

Zargari Amir Hosein Afandizadeh1,AshrafiAmiri Marzieh1,Seo Minjun1,Pudukotai Dinakarrao Sai Manoj2ORCID,Fouda Mohammed E.1ORCID,Kurdahi Fadi1

Affiliation:

1. Department of Electrical and Computer Engineering, University of California, Irvine, CA 92697, USA

2. Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA

Abstract

Reverse engineering (RE) in Integrated Circuits (IC) is a process in which one will attempt to extract the internals of an IC, extract the circuit structure, and determine the gate-level information of an IC. In general, the RE process can be done for validation as well as Intellectual Property (IP) stealing intentions. In addition, RE also facilitates different illicit activities such as the insertion of hardware Trojan, pirating, or counterfeiting a design, or developing an attack. In this work, we propose an approach to introduce cognitive perturbations, with the aid of adversarial machine learning, to the IC layout that could prevent the RE process from succeeding. We first construct a layer-by-layer image dataset of 45 nm predictive technology. With this dataset, we propose a conventional neural network model called RecoG-Net to recognize the logic gates, which is the first step in RE. RecoG-Net is successful in recognizing the gates with more than 99.7% accuracy. Our thwarting approach utilizes the concept of adversarial attack generation algorithms to generate perturbation. Unlike traditional adversarial attacks in machine learning, the perturbation generation needs to be highly constrained to meet the fab rules such as Design Rule Checking (DRC) Layout vs. Schematic (LVS) checks. Hence, we propose CAPTIVE as a constrained perturbation generation satisfying the DRC. The experiments show that the accuracy of reverse engineering using machine learning techniques can decrease from 100% to approximately 30% based on the adversary generator.

Funder

US National Science Foundation

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic literature review on past attack analysis on industrial control systems;Transactions on Emerging Telecommunications Technologies;2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3