Predicting Abnormal Respiratory Patterns in Older Adults Using Supervised Machine Learning on Internet of Medical Things Respiratory Frequency Data

Author:

Santana-Mancilla Pedro C.1ORCID,Castrejón-Mejía Oscar E.1,Fajardo-Flores Silvia B.1ORCID,Anido-Rifón Luis E.2ORCID

Affiliation:

1. School of Telematics, Universidad de Colima, Colima 28040, Mexico

2. atlanTTic Research Center, School of Telecommunications Engineering, University of Vigo, 36310 Vigo, Spain

Abstract

Wearable Internet of Medical Things (IoMT) technology, designed for non-invasive respiratory monitoring, has demonstrated considerable promise in the early detection of severe diseases. This paper introduces the application of supervised machine learning techniques to predict respiratory abnormalities through frequency data analysis. The principal aim is to identify respiratory-related health risks in older adults using data collected from non-invasive wearable devices. This article presents the development, assessment, and comparison of three machine learning models, underscoring their potential for accurately predicting respiratory-related health issues in older adults. The convergence of wearable IoMT technology and machine learning holds immense potential for proactive and personalized healthcare among older adults, ultimately enhancing their quality of life.

Publisher

MDPI AG

Subject

Information Systems

Reference36 articles.

1. Health inequality among vulnerable groups in Mexico: Older adults, indigenous people, and migrants;Rev. Panam. Salud Publica,2014

2. Mortalidad por enfermedades respiratorias en el adulto mayor;Rojas;Evolución en un año. Acta Médica Cent.,2016

3. Efectos Del Reposo Prolongado En Adultos Mayores Hospitalizados;Ann. Fam. Med.,2018

4. Tendencias de morbilidad y mortalidad por neumonía en adultos mexicanos (1984–2010);Neumol. Y Cirugía Tórax,2015

5. Frailty and Mortality in Hospitalized Older Adults with COVID-19: Retrospective Observational Study;Mellaerts;J. Am. Med. Dir. Assoc.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3