DAG-Based Formal Modeling of Spark Applications with MSVL

Author:

Fan Kaixuan1,Wang Meng1

Affiliation:

1. Cyberspace Security and Computer College, Hebei University, Baoding 071000, China

Abstract

Apache Spark is a high-speed computing engine for processing massive data. With its widespread adoption, there is a growing need to analyze its correctness and temporal properties. However, there is scarce research focused on the verification of temporal properties in Spark programs. To address this gap, we employ the code-level runtime verification tool UMC4M based on the Modeling, Simulation, and Verification Language (MSVL). To this end, a Spark program S has to be translated into an MSVL program M, and the negation of the property P specified by a Propositional Projection Temporal Logic (PPTL) formula that needs to be verified is also translated to an MSVL program M1; then, a new MSVL program “M and M1” can be compiled and executed. Whether program S violates the property P is determined by the existence of an acceptable execution of “M and M1”. Thus, the key issue lies in how to formalize model Spark programs using MSVL programs. We previously proposed a solution to this problem—using the MSVL functions to perform Resilient Distributed Datasets (RDD) operations and converting the Spark program into an MSVL program based on the Directed Acyclic Graph (DAG) of the Spark program. However, we only proposed this idea. Building upon this foundation, we implement the conversion from RDD operations to MSVL functions and propose, as well as implement, the rules for translating Spark programs to MSVL programs based on DAG. We confirm the feasibility of this approach and provide a viable method for verifying the temporal properties of Spark programs. Additionally, an automatic translation tool, S2M, is developed. Finally, a case study is presented to demonstrate this conversion process.

Funder

Hebei Natural Science Foundation

Science and Technology Research Project of Higher Education in Hebei Province

Advanced Talents Incubation Program of the Hebei University

Publisher

MDPI AG

Subject

Information Systems

Reference31 articles.

1. Performance analysis of distributed computing frameworks for big data analytics: Hadoop vs. spark;Ketu;Comput. Sist.,2020

2. A comprehensive bibliometric analysis of Apache Hadoop from 2008 to 2020;Zhang;Int. J. Intell. Comput. Cybern.,2023

3. Apache spark: A unified engine for big data processing;Zaharia;Commun. ACM,2016

4. Chambers, B., and Zaharia, M. (2018). Spark: The Definitive Guide: Big Data Processing MADE Simple, O’Reilly Media.

5. Analysis of hadoop MapReduce scheduling in heterogeneous environment;Kalia;Ain Shams Eng. J.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3