An Ontology-driven Cyberinfrastructure for Intelligent Spatiotemporal Question Answering and Open Knowledge Discovery

Author:

Li ,Song ,Tian

Abstract

The proliferation of geospatial data from diverse sources, such as Earth observation satellites, social media, and unmanned aerial vehicles (UAVs), has created a pressing demand for cross-platform data integration, interoperation, and intelligent data analysis. To address this big data challenge, this paper reports our research in developing a rule-based, semantic-enabled service chain model to support intelligent question answering for leveraging the abundant data and processing resources available online. Four key techniques were developed to achieve this goal: (1) A spatial and temporal reasoner resolves the spatial and temporal information in a given scientific question and enables place-name disambiguation based on support from a gazetteer; (2) a spatial operation ontology categorizes important spatial analysis operations, data types, and data themes, which will be used in automated chain generation; (3) a language-independent chaining rule defines the template for input, spatial operation, and output as well as rules for embedding multiple spatial operations for solving a complex problem; and (4) a recursive algorithm facilitates the generation of executive workflow metadata according to the chaining rules. We implement this service chain model in a cyberinfrastructure for online and reproducible spatial analysis and question answering. Moving the problem-solving environment from a desktop-based environment onto a geospatial cyberinfrastructure (GeoCI) offers better support to collaborative spatial decision-making and ensures science replicability. We expect this work to contribute significantly to the advancement of a reproducible spatial data science and to building the next-generation open knowledge network.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3