Geobia Achievements and Spatial Opportunities in the Era of Big Earth Observation Data

Author:

Lang StefanORCID,Hay Geoffrey J.,Baraldi Andrea,Tiede DirkORCID,Blaschke ThomasORCID

Abstract

The primary goal of collecting Earth observation (EO) imagery is to map, analyze, and contribute to an understanding of the status and dynamics of geographic phenomena. In geographic information science (GIScience), the term object-based image analysis (OBIA) was tentatively introduced in 2006. When it was re-formulated in 2008 as geographic object-based image analysis (GEOBIA), the primary focus was on integrating multiscale EO data with GIScience and computer vision (CV) solutions to cope with the increasing spatial and temporal resolution of EO imagery. Building on recent trends in the context of big EO data analytics as well as major achievements in CV, the objective of this article is to review the role of spatial concepts in the understanding of image objects as the primary analytical units in semantic EO image analysis, and to identify opportunities where GEOBIA may support multi-source remote sensing analysis in the era of big EO data analytics. We (re-)emphasize the spatial paradigm as a key requisite for an image understanding system capable to deal with and exploit the massive data streams we are currently facing; a system which encompasses a combined physical and statistical model-based inference engine, a well-structured CV system design based on a convergence of spatial and colour evidence, semantic content-based image retrieval capacities, and the full integration of spatio-temporal aspects of the studied geographical phenomena.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference90 articles.

1. COM(2016) 705 Final. Space Strategy for Europe,2016

2. Object-based image analysis for remote sensing applications: Modeling reality—dealing with complexity;Lang,2008

3. Image retrieval via isotropic and anisotropic mappings

4. Categories and Concepts;Murphy,2014

5. Geospatial data integration in OBIA—implications of accuracy and validity;Lang,2015

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3