Impacts of Rapid Socioeconomic Development on Cropping Intensity Dynamics in China during 2001–2016

Author:

Li Le,Ao ZuruiORCID,Zhao Yaolong,Liu Xulong

Abstract

Changes in cropping intensity reflect not only changes in land use but also the transformation of land functions. Although both natural conditions and socioeconomic factors can influence the spatial distribution of the cropping intensity and its changes, socioeconomic developments related to human activities can exert great impacts on short term cropping intensity changes. The driving force of this change has a high level of uncertainty; and few researchers have implemented comprehensive studies on the underlying driving forces and mechanisms of these changes. This study produced cropping intensity maps in China from 2001 to 2016 using remote sensing data and analyzed the impacts of socioeconomic drivers on cropping intensity and its changes in nine major agricultural zones in China. We found that the average annual cropping intensity in all nine agricultural zones increased from 2001 to 2016 under rapid socioeconomic development, and the trends in the seven major agricultural zones were significantly increased (p < 0.05), based on a Mann–Kendall test, except for the Northeast China Plain (NE Plain) and Qinghai Tibet Plateau (QT Plateau). Based on the results from the Geo-Detector, a widely used geospatial analysis tool, the dominant factors that affected cropping intensity distribution were related to the arable land output in the plain regions and topography in the mountainous regions. The factors that affected cropping intensity changes were mainly related to the arable land area and crop yields in northern China, and regional economic developments, such as machinery power input and farmers’ income in southern China. These findings provide useful cropping intensity data and profound insights for policymaking on how to use cultivated land resources efficiently and sustainably.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference50 articles.

1. Direct human influence on atmospheric CO2 seasonality from increased cropland productivity

2. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China

3. Mapping crop types, irrigated areas, and cropping intensities in heterogeneous landscapes of southern india using multi-temporal medium-resolution imagery: Implications for assessing water use in agriculture;Heller;PERS,2012

4. Global cropping intensity gaps: Increasing food production without cropland expansion

5. Mapping Asian Cropping Intensity With MODIS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3