Hierarchical Semantic Correspondence Analysis on Feature Classes between Two Geospatial Datasets Using a Graph Embedding Method

Author:

Huh

Abstract

A method to find corresponding feature class pairs, including hierarchical M:N pairs between two geospatial datasets is proposed. Applying an overlapping analysis to the object sets within the feature classes, the similarities of the feature classes are estimated and projected onto a lower-dimensional vector space after applying the graph embedding method. In this space, conventional mathematical tools—agglomerative hierarchical clustering in this study—could be used to analyze semantic correspondences between the datasets and identify their hierarchical M:N corresponding pairs. The proposed method was applied to two cadastral parcel datasets; one for latest land-use records in an urban information system, and the other, for original land-use categories in the Korea land information system. To quantitatively assess identified feature pairs, F-measures for each pair are presented. The results showed that it was possible to find various semantic correspondences of the feature classes and infer regional land development characteristics.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3