Forecast Error Sensitivity Analysis for Bidding in Electricity Markets with a Hybrid Renewable Plant Using a Battery Energy Storage System

Author:

Martinez-Rico JonORCID,Zulueta EkaitzORCID,Fernandez-Gamiz UnaiORCID,Ruiz de Argandoña IsmaelORCID,Armendia MikelORCID

Abstract

Deep integration of renewable energies into the electricity grid is restricted by the problems related to their intermittent and uncertain nature. These problems affect both system operators and renewable power plant owners since, due to the electricity market rules, plants need to report their production some hours in advance and are, hence, exposed to possible penalties associated with unfulfillment of energy production. In this context, energy storage systems appear as a promising solution to reduce the stochastic nature of renewable sources. Furthermore, batteries can also be used for performing energy arbitrage, which consists in shifting energy and selling it at higher price hours. In this paper, a bidding optimization algorithm is used for enhancing profitability and minimizing the battery loss of value. The algorithm considers the participation in both day-ahead and intraday markets, and a sensitivity analysis is conducted to check the profitability variation related to prediction uncertainty. The obtained results highlight the importance of bidding in intraday markets to compensate the prediction errors and show that, for the Iberian Electricity Market, the uncertainty does not significantly affect the final benefits.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference43 articles.

1. Climate Change and Renewable Energy: National Policies and the Role of Communities, Cities and Regions,2019

2. Preview of the Report on The Spanish Electricity System 2019,2020

3. European Union Electricity Markets: Current Practice and Future View

4. A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3