Abstract
Three computer algorithms are presented. One reduces a network N to its interior, I. Another counts all the triangles in a network, and the last randomly generates networks similar to N given just its interior I. However, these algorithms are not the usual numeric programs that manipulate a matrix representation of the network; they are set-based. Union and meet are essential binary operators; contained_in is the basic relational comparator. The interior I is shown to have desirable formal properties and to provide an effective way of revealing “communities” in social networks. A series of networks randomly generated from I is compared with the original network, N.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Reference25 articles.
1. Graph Theory: Modeling, Applications and Algorithms;Agnarsson,2007
2. Graph Theory;Harary,1969
3. Finding community structure in networks using the eigenvectors of matrices
4. Networks;Newman,2018
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献