Model-Assisted Optimization of Cobalt Biosorption on Macroalgae Padina pavonica for Wastewater Treatment

Author:

Aloufi Abeer S.1ORCID,Al Riyami Bahja2ORCID,Fawzy Mustafa A.34ORCID,Al-Yasi Hatim M.4,Koutb Mostafa5,Hassan Sedky H. A.2ORCID

Affiliation:

1. Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman

3. Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

4. Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

5. Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah 24381, Saudi Arabia

Abstract

The release of heavy metals into the environment as a result of industrial and agricultural activities represents one of the century’s most significant issues. Cobalt is a hazardous metal that is employed in a variety of industries. In this study, response surface methodology (RSM) combined with Box–Behnken design (BBD) was utilized to optimize the Co(II) ion removal from synthetic wastewater by the brown macroalga Padina pavonica. The influence of three factors, namely algal inoculum size, pH, and initial metal concentration, was assessed in optimization studies. RSM proposed a second-order quadratic model with a p-value of <0.0001 and R2 of 0.984 for P. pavonica. According to the data related to RSM optimization, the maximum percentage of Co(II) removal of 84.3% was attained under the conditions of algal inoculum size of 5.98 g/L, pH of 6.73, and initial Co(II) concentration of 21.63 mg/L. The experimental data from the biosorption process were fitted well with the Langmuir, Freundlich, and Temkin isotherm models. The maximal Co(II) adsorption capacity was estimated using the Langmuir model to be 17.98 mg/g. Furthermore, the pseudo-second-order kinetic model was shown to have the best fit for Co biosorption by P. pavonica, showing that the mechanism of Co(II) biosorption was chemisorption controlled by surface biosorption and intra-particle diffusion. Thermodynamic parameters were also investigated to evaluate the Gibbs free energy for the Co(II) ion, which was positive, showing that the biosorption process is nonspontaneous and exothermic, and the cobalt biosorption rate decreases with increasing temperature. Algal biomass was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. These analyses revealed the biosorbent’s diverse functional groups and porous, rough appearance. Therefore, P. pavonica can be used to implement sustainable, eco-friendly, and acceptable solutions to water pollution problems.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3