Gait Event Detection and Travel Distance Using Waist-Worn Accelerometers across a Range of Speeds: Automated Approach

Author:

Ramli Albara Ah1ORCID,Liu Xin1,Berndt Kelly2,Chuah Chen-Nee3,Goude Erica2,Kaethler Lynea B.2,Lopez Amanda2,Nicorici Alina2,Owens Corey4,Rodriguez David2,Wang Jane2,Aranki Daniel5ORCID,McDonald Craig M.2,Henricson Erik K.2ORCID

Affiliation:

1. Department of Computer Science, School of Engineering, University of California, 1 Shields Ave, Davis, CA 95616, USA

2. Department of Physical Medicine and Rehabilitation, School of Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA

3. Department of Electrical and Computer Engineering, School of Engineering, University of California, 1 Shields Ave, Davis, CA 95616, USA

4. UC Davis Center for Health and Technology, School of Medicine, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA

5. Berkeley School of Information, University of California Berkeley, 1 Shields Ave, Berkeley, CA 94720, USA

Abstract

Estimation of temporospatial clinical features of gait (CFs), such as step count and length, step duration, step frequency, gait speed, and distance traveled, is an important component of community-based mobility evaluation using wearable accelerometers. However, accurate unsupervised computerized measurement of CFs of individuals with Duchenne muscular dystrophy (DMD) who have progressive loss of ambulatory mobility is difficult due to differences in patterns and magnitudes of acceleration across their range of attainable gait velocities. This paper proposes a novel calibration method. It aims to detect steps, estimate stride lengths, and determine travel distance. The approach involves a combination of clinical observation, machine-learning-based step detection, and regression-based stride length prediction. The method demonstrates high accuracy in children with DMD and typically developing controls (TDs) regardless of the participant’s level of ability. Fifteen children with DMD and fifteen TDs underwent supervised clinical testing across a range of gait speeds using 10 m or 25 m run/walk (10 MRW, 25 MRW), 100 m run/walk (100 MRW), 6-min walk (6 MWT), and free-walk (FW) evaluations while wearing a mobile-phone-based accelerometer at the waist near the body’s center of mass. Following calibration by a trained clinical evaluator, CFs were extracted from the accelerometer data using a multi-step machine-learning-based process and the results were compared to ground-truth observation data. Model predictions vs. observed values for step counts, distance traveled, and step length showed a strong correlation (Pearson’s r = −0.9929 to 0.9986, p < 0.0001). The estimates demonstrated a mean (SD) percentage error of 1.49% (7.04%) for step counts, 1.18% (9.91%) for distance traveled, and 0.37% (7.52%) for step length compared to ground-truth observations for the combined 6 MWT, 100 MRW, and FW tasks. Our study findings indicate that a single waist-worn accelerometer calibrated to an individual’s stride characteristics using our methods accurately measures CFs and estimates travel distances across a common range of gait speeds in both DMD and TD peers.

Funder

US Department of Defense

Muscular Dystrophy Association

University of California Center for Information Technology Research in the Interest of Society (CITRIS) and the Banatao Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3