Abstract
The interaction between coastal ocean flows and the submarine pipeline involved with distinct physical phenomena occurring at a vast range of spatial and temporal scales has always been an important research subject. In this article, the hydrodynamic forces on the submarine pipeline and the characteristics of tidal flows around the pipeline are studied depending on a high-fidelity multi-physics modeling system (SIFOM–FVCOM), which is an integration of the Solver for Incompressible Flow on the Overset Meshes (SIFOM) and the Finite Volume Coastal Ocean Model (FVCOM). The interactions between coastal ocean flows and the submarine pipeline are numerically simulated in a channel flume, the results of which show that the hydrodynamic forces on the pipeline increase with the increase of tidal amplitude and the decrease of water depth. Additionally, when scour happens under the pipeline, the numerical simulation of the suspended pipeline is also carried out, showing that the maximum horizontal hydrodynamic forces on the pipeline reduce and the vertical hydrodynamic forces grow with the increase of the scour depth. According to the results of the simulations in this study, an empirical formula for estimating the hydrodynamic forces on the submarine pipeline caused by coastal ocean flows is given, which might be useful in engineering problems. The results of the study also reveal the basic features of flow structures around the submarine pipeline and its hydrodynamic forces caused by tidal flows, which contributes to the design of submarine pipelines.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献