Monthly Precipitation Forecasting in the Han River Basin, South Korea, Using Large-Scale Teleconnections and Multiple Regression Models

Author:

Kim Chul-GyumORCID,Lee JeongwooORCID,Lee Jeong Eun,Kim Nam Won,Kim HyeonjunORCID

Abstract

In this study, long-term precipitation forecasting models capable of reflecting constantly changing climate characteristics and providing forecasts for up to 12 months in advance were developed using lagged correlations with global and local climate indices. These models were applied to predict monthly precipitation in the Han River basin, South Korea. Based on the lead month of forecast, 10 climate indices with high correlations were selected and combined to construct four-variable multiple regression models for monthly precipitation forecasting. The forecast results for the analytical period (2010–2019) showed that predictability was low for some summer seasons but satisfactory for other seasons and long periods. In the goodness-of-fit test results, the Nash–Sutcliffe efficiency (0.48–0.57) and the ratio of the root mean square error to the standard deviation of the observation (0.66–0.72) were evaluated to be satisfactory while the percent bias (9.4–15.5%) was evaluated to be between very good and good. Due to the nature of the statistical models, however, the predictability is highly likely to be reduced if climate phenomena that are different from the statistical characteristics of the past appear in the forecast targets or predictors. The forecast results were also presented as tercile probability information (below normal, normal, above normal) through a comparison with the observation data of the past 30 years. The results are expected to be utilized as useful forecast information in practice if the predictability for some periods is improved.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3