Biotechnological Strategies for Chitosan Production by Mucoralean Strains and Dimorphism Using Renewable Substrates

Author:

de Souza Adriana Ferreira,Galindo Hugo Marques,de Lima Marcos Antônio Barbosa,Ribeaux Daylin RubioORCID,Rodríguez Dayana MonteroORCID,da Silva Andrade Rosileide Fontenele,Gusmão Norma Buarque,de Campos-Takaki Galba MariaORCID

Abstract

We investigated the influence of corn steep liquor (CSL) and cassava waste water (CWW) as carbon and nitrogen sources on the morphology and production of biomass and chitosan by Mucor subtilissimus UCP 1262 and Lichtheimia hyalospora UCP 1266. The highest biomass yields of 4.832 g/L (M. subtilissimus UCP 1262) and 6.345 g/L (L. hyalospora UCP 1266) were produced in assay 2 (6% CSL and 4% CWW), factorial design 22, and also favored higher chitosan production (32.471 mg/g) for M. subtilissimus. The highest chitosan production (44.91 mg/g) by L. hyalospora (UCP 1266) was obtained at the central point (4% of CWW and 6% of CSL). The statistical analysis, the higher concentration of CSL, and lower concentration of CWW significantly contributed to the growth of the strains. The FTIR bands confirmed the deacetylation degree of 80.29% and 83.61% of the chitosan produced by M. subtilissimus (UCP 1262) and L. hyalospora (UCP 1266), respectively. M. subtilissimus (UCP 1262) showed dimorphism in assay 4–6% CSL and 8% CWW and central point. L. hyalospora (UCP 1266) was optimized using a central composite rotational design, and the highest yield of chitosan (63.18 mg/g) was obtained in medium containing 8.82% CSL and 7% CWW. The experimental data suggest that the use of CSL and CWW is a promising association to chitosan production.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference57 articles.

1. Sustainable Production of Chitosan;Tyliszczak,2020

2. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications

3. Chitin and Chitosan: Chemistry, Properties and Applications;Dutta;J. Sci. Ind. Res.,2004

4. A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection

5. Direct Solid-State Fermentation of Soybean Processing Residues for the Production of Fungal Chitosan by Mucorrouxii;Mondala;J. Mater. Sci. Chem. Eng.,2015

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3