Author:
Nakhle Jean,Rodriguez Anne-Marie,Vignais Marie-Luce
Abstract
Mitochondria are essential cellular components that ensure physiological metabolic functions. They provide energy in the form of adenosine triphosphate (ATP) through the electron transport chain (ETC). They also constitute a metabolic hub in which metabolites are used and processed, notably through the tricarboxylic acid (TCA) cycle. These newly generated metabolites have the capacity to feed other cellular metabolic pathways; modify cellular functions; and, ultimately, generate specific phenotypes. Mitochondria also provide intracellular signaling cues through reactive oxygen species (ROS) production. As expected with such a central cellular role, mitochondrial dysfunctions have been linked to many different diseases. The origins of some of these diseases could be pinpointed to specific mutations in both mitochondrial- and nuclear-encoded genes. In addition to their impressive intracellular tasks, mitochondria also provide intercellular signaling as they can be exchanged between cells, with resulting effects ranging from repair of damaged cells to strengthened progression and chemo-resistance of cancer cells. Several therapeutic options can now be envisioned to rescue mitochondria-defective cells. They include gene therapy for both mitochondrial and nuclear defective genes. Transferring exogenous mitochondria to target cells is also a whole new area of investigation. Finally, supplementing targeted metabolites, possibly through microbiota transplantation, appears as another therapeutic approach full of promises.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献