Hybrid Materials Based on Silica Matrices Impregnated with Pt-Porphyrin or PtNPs Destined for CO2 Gas Detection or for Wastewaters Color Removal

Author:

Anghel Diana,Lascu AncaORCID,Epuran Camelia,Fratilescu Ion,Ianasi CatalinORCID,Birdeanu MihaelaORCID,Fagadar-Cosma EugeniaORCID

Abstract

Multifunctional hybrid materials with applications in gas sensing or dye removal from wastewaters were obtained by incorporation into silica matrices of either Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin (PtTAOPP) or platinum nanoparticles (PtNPs) alone or accompanied by 5,10,15,20-tetra-(4-allyloxy-phenyl)-porphyrin (TAOPP). The tetraethylorthosilicate (TEOS)-based silica matrices were obtained by using the sol-gel method performed in two step acid-base catalysis. Optical, structural and morphological properties of the hybrid materials were determined and compared by UV-vis, fluorescence and FT-IR spectroscopy techniques, by atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) and by Brunauer–Emmett–Teller (BET) analysis. PtTAOPP-silica hybrid was the most efficient material both for CO2 adsorption (0.025 mol/g) and for methylene blue adsorption (7.26 mg/g) from wastewaters. These results were expected due to both the ink-bottle mesopores having large necks that exist in this hybrid material and to the presence of the porphyrin moiety that facilitates chemical interactions with either CO2 gas or the dye molecule. Kinetic studies concerning the mechanism of dye adsorption demonstrated a second order kinetic model, thus it might be attributed to both physical and chemical processes.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3