PolSAR Image Classification Based on Multi-Modal Contrastive Fully Convolutional Network

Author:

Hua Wenqiang1ORCID,Wang Yi1,Yang Sijia1,Jin Xiaomin1

Affiliation:

1. Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710061, China

Abstract

Deep neural networks have achieved remarkable results in the field of polarimetric synthetic aperture radar (PolSAR) image classification. However, PolSAR is affected by speckle imaging, resulting in PolSAR images usually containing a large amount of speckle noise, which usually leads to the poor spatial consistency of classification results and insufficient classification accuracy. Semantic segmentation methods based on deep learning can realize the task of image segmentation and classification at the same time, producing fine-grained and smooth classification maps. However, these approaches require enormous labeled data sets, which are laborious and time-consuming. Due to these issues, a new multi-modal contrastive fully convolutional network, named MCFCN, is proposed for PolSAR image classification in this paper, which combines multi-modal features of the same pixel as inputs to the model based on a fully convolutional network and accomplishes the classification task using only a small amount of labeled data through contrastive learning. In addition, to describe the PolSAR terrain targets more comprehensively and enhance the robustness of the classifier, a pixel overlapping classification strategy is proposed, which can not only improve the classification accuracy effectively but also enhance the stability of the method. The experiments demonstrate that compared with existing classification methods, the classification results of the proposed method for three real PolSAR datasets have higher classification accuracy.

Funder

National Natural Science Foundation of China

the Special scientific research plan project of the Shaanxi Provincial Department of Education

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3