Transformer-Based Feature Compensation Network for Aerial Photography Person and Ground Object Recognition

Author:

Zhang Guoqing123ORCID,Zheng Chen1,Ye Zhonglin4

Affiliation:

1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China

4. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Qinghai Normal University, Xining 810008, China

Abstract

Visible-infrared person re-identification (VI-ReID) aims at matching pedestrian images with the same identity between different modalities. Existing methods ignore the problems of detailed information loss and the difficulty in capturing global features during the feature extraction process. To solve these issues, we propose a Transformer-based Feature Compensation Network (TFCNet). Firstly, we design a Hierarchical Feature Aggregation (HFA) module, which recursively aggregates the hierarchical features to help the model preserve detailed information. Secondly, we design the Global Feature Compensation (GFC) module, which exploits Transformer’s ability to capture long-range dependencies in sequences to extract global features. Extensive results show that the rank-1/mAP of our method on the SYSU-MM01 and RegDB datasets reaches 60.87%/58.87% and 91.02%/75.06%, respectively, which is better than most existing excellent methods. Meanwhile, to demonstrate our method‘s transferability, we also conduct related experiments on two aerial photography datasets.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3