The MS-RadarFormer: A Transformer-Based Multi-Scale Deep Learning Model for Radar Echo Extrapolation

Author:

Geng Huantong12,Wu Fangli3ORCID,Zhuang Xiaoran4,Geng Liangchao5,Xie Boyang3,Shi Zhanpeng1ORCID

Affiliation:

1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. China Meteorological Administration Radar Meteorology Key Laboratory, Nanjing 210023, China

3. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. Jiangsu Meteorological Observatory, Nanjing 210008, China

5. School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

As a spatial–temporal sequence prediction task, radar echo extrapolation aims to predict radar echoes’ future movement and intensity changes based on historical radar observations. Two urgent issues still need to be addressed in deep learning radar echo extrapolation models. First, the predicted radar echo sequences often exhibit echo-blurring phenomena. Second, over time, the output echo intensities from the model gradually weaken. In this paper, we propose a novel model called the MS-RadarFormer, a Transformer-based multi-scale deep learning model for radar echo extrapolation, to mitigate the two above issues. We introduce a multi-scale design in the encoder–decoder structure and a Spatial–Temporal Attention block to improve the precision of radar echoes and establish long-term dependencies of radar echo features. The model uses a non-autoregressive approach for echo prediction, avoiding accumulation errors during the recursive generation of future echoes. Compared to the baseline, our model shows an average improvement of 15.8% in the critical success index (CSI), an average decrease of 8.3% in the false alarm rate (FAR), and an average improvement of 16.2% in the Heidke skill score (HSS).

Funder

National Natural Science Foundation of China

Open Grants of China Meteorological Administration Radar Meteorology Key Laboratory

China Meteorological Administration Innovation and Development Program

China Meteorological Administration Key Innovation Team

Publisher

MDPI AG

Reference30 articles.

1. Numerical Weather Prediction;Kimura;J. Wind Eng. Ind. Aerodyn.,2002

2. Automatic Cell Detection and Tracking;Crane;IEEE Trans. Geosci. Electron.,1979

3. Real-Time Automated Tracking of Severe Thunderstorms Using Doppler Weather Radar;Bjerkaas;Proceedings of the Bulletin of the American Meteorological Society,1979

4. Browning, K. (1982). Nowcasting, Academic Press.

5. Three-Dimensional Storm Motion Detection by Conventional Weather Radar;Rinehart;Nature,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3