Evaluating the Potential of Sentinel-2 Time Series Imagery and Machine Learning for Tree Species Classification in a Mountainous Forest

Author:

Liu Pan12ORCID,Ren Chunying13ORCID,Wang Zongming1ORCID,Jia Mingming1ORCID,Yu Wensen3,Ren Huixin12,Xia Chenzhen12

Affiliation:

1. Northeast Institute of Geography and Agroecology, Key Laboratory of Wetland Ecology and Environment, Chinese Academy of Sciences, Changchun 130102, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Fujian Key Laboratory of Big Data Application and Intellectualization for Tea Industry, Wuyi University, Nanping 354300, China

Abstract

Accurate and reliable information on tree species composition and distribution is crucial in operational and sustainable forest management. Developing a high-precision tree species map based on time series satellite data is an effective and cost-efficient approach. However, we do not quantitatively know how the time scale of data acquisitions contributes to complex tree species mapping. This study aimed to produce a detailed tree species map in a typical forest zone of the Changbai Mountains by incorporating Sentinel-2 images, topography data, and machine learning algorithms. We focused on exploring the effects of the three-year time series of Sentinel-2 within monthly, seasonal, and yearly time scales on the classification of ten dominant tree species. A random forest (RF) and support vector machine (SVM) were compared and employed to map continuous tree species. The results showed that classification with monthly datasets (overall accuracy (OA): 83.38–87.45%) outperformed that with seasonal and yearly datasets (OA:72.38–85.91%), and the RF (OA: 81.70–87.45%) was better than the SVM (OA: 72.38–83.38%) at processing the same datasets. Short-wave infrared, the normalized vegetation index, and elevation were the most important variables for tree species classification. The highest classification accuracy of 87.45% was achieved by combining RF, monthly datasets, and topography information. In terms of single species’ accuracy, the F1 scores of the ten tree species ranged from 62.99% (Manchurian ash) to 97.04% (Mongolian Oak), and eight of them obtained high F1 scores greater than 87%. This study confirmed that monthly Sentinel-2 datasets, topography data, and machine learning algorithms have great potential for accurate tree species mapping in mountainous regions.

Funder

Science & Technology Fundamental Resources Investigation Program

National Natural Science Foundation of China

Open Project Program of Fujian Key Laboratory of Big Data Application and Intellectualization for Tea Industry, Wuyi University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3