Affiliation:
1. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
2. College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
3. Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Abstract
Current cities are not concrete jungles and deserts with sparse vegetation. Urban green space (UGS) appears widely in human activity areas and plays an important role in improving the human living environment and accumulates carbon storage. However, given the scattered distribution of UGS, studies on both the refined spatial estimation of carbon storage and appropriate mapping scale are still lacking. Taking the downtown area of Kaifeng, China, as the study area, this study verified the i-Tree Eco model on the basis of a field survey and accurately estimated the spatial carbon storage of UGS by combining it with remote sensing data, and finally, we obtained the minimum spatial mapping scale of UGS carbon storage by scaling. The results showed that (1) the total area of UGS in study area was 26.41 km2, of which the proportion of total area of residential area and park green spaces was about 50%. The area of UGS per capita in the study area is 40.49 m2. (2) Within the 123 survey samples, the proportion of communities with tree–shrub–herbs structure was the highest, 51.22%. The average carbon density was 5.89 kg m−2, among which the park, protective and square green spaces had the highest carbon density in all land use types. (3) The total carbon storage of UGS in the study area was 114,389.17 t, and the carbon storage of UGS per capita was 175.39 kg. Furthermore, the scaling analysis showed that 0.25 km spatial resolution was the minimum spatial scale for UGS carbon storage mapping. This study improves our understanding of urban carbon storage, highlights the role and potential of UGS in carbon neutrality, and clarifies the importance of estimating urban carbon storage at appropriate scales. This study is also of great significance for rationally understanding the terrestrial carbon cycle in urban areas and improving regional climate simulations.
Funder
National Natural Science Foundation of China
Xinyang Institute of Ecology 2023 Open Fund
Central Plains Young Top-notch Talent Program and Excellent Textbook Project for Graduate Students in Henan Province