Combining Hydrological Models and Remote Sensing to Characterize Snowpack Dynamics in High Mountains

Author:

Ougahi Jamal Hassan12ORCID,Rowan John S.1ORCID

Affiliation:

1. UNESCO Centre of Water Law, Policy & Science, University of Dundee, Dundee DD1 4HN, UK

2. Higher Education Department, Government of the Punjab, Lahore 54000, Punjab, Pakistan

Abstract

Seasonal snowpacks, characterized by their snow water equivalent (SWE), can play a major role in the hydrological cycle of montane environments with months of snow accretion followed by episodes of melt controlling flood risk and water resource availability downstream. Quantifying the temporal and spatial patterns of snowpack accumulation and its subsequent melt and runoff is an internationally significant challenge, particularly within mountainous regions featuring complex terrain with limited or absent observational data. Here we report a new approach to snowpack characterization using open-source global satellite and modelled data products (precipitation and SWE) greatly enhancing the utility of the widely used Soil and Water Assessment Tool (SWAT). The paper focusses on the c. 23,000 km2 Chenab river basin (CRB) in the headwaters of the Indus Basin, globally important because of its large and growing population and increasing water insecurity due to climate change. We used five area-weighted averaged satellite, gridded and reanalysis precipitation datasets: ERA5-Land, CMORPH, TRMM, APHRODITE and CPC UPP. As well as comparison to local weather station data, these were used in SWAT to model streamflow for evaluation against observed streamflow at the basin outlet. ERA5-Land data provided the best streamflow match-ups and was used to infer snowpack (SWE) dynamics at basin and sub-basin scales. Snow reference data were derived from remote sensing and modelled SWE re-analysis products: ULCA-SWE and KRA-SWE, respectively. Beyond conventional auto-calibration and single-variable approaches we undertook multi-variable calibration using R-SWAT to manually adjust snow parameters alongside observed streamflow data. Characterization of basin-wide patterns of snowpack build-up and melt (SWE dynamics) were greatly strengthened using KRA-SWE data accompanied by improved streamflow simulation in sub-basins dominated by seasonal snow cover. UCLA-SWE data also improved SWE estimations using R-SWAT but weakened the performance of simulated streamflow due to under capture of seasonal runoff from permanent snow/ice fields in the CRB. This research highlights the utility and value of remote sensing and modelling data to drive better understanding of snowpack dynamics and their contribution to runoff in the absence of in situ snowpack data in high-altitude environments. An improved understanding of snow-bound water is vital in natural hazard risk assessment and in better managing worldwide water resources in the populous downstream regions of mountain-fed large rivers under threat from climate change.

Funder

University of Dundee

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3