Integrated Assessment of Coastal Subsidence in Nansha District, Guangzhou City, China: Insights from SBAS-InSAR Monitoring and Risk Evaluation

Author:

Wang Simiao1,Sun Huimin2,Wei Lianhuan3,Pi Pengcheng4,Zeng Min5,Pan Yujie6,Xue Zixuan2,Jiang Xuehan2

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China

3. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

4. China Gezhouba Group No. 1 Engineering Co., Ltd., Yichang 443000, China

5. Wuhan Center, China Geological Survey, Wuhan 430205, China

6. College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

Abstract

Monitoring and assessing coastal subsidence is crucial to mitigating potential disaster risks associated with rising sea levels. Nansha District in Guangzhou City, representing global coastal soft-soil urban areas, faces significant challenges related to ground subsidence. However, the current understanding of the status, causative factors, and risk (includes subsidence susceptibility and vulnerability) assessment of ground subsidence in Nansha District is unclear. To address this gap, we utilized the SBAS-InSAR technique, analyzing 49 Sentinel-1A images from December 2015 to June 2019, for systematic ground subsidence monitoring. Subsequently, we assessed subsidence risk using a comprehensive index method and a risk matrix. Our findings indicate that subsidence velocity primarily ranged from −40 to −5 mm/a, with a spatial pattern of increasing subsidence from inland to coastal areas. The cumulative subsidence process unfolded in four distinct stages. The genesis of land subsidence was linked to an endogenous geological context dominated by soft-soil deposition, influenced by external factors such as surface loading and groundwater extraction. High-risk zones were concentrated in key engineering development areas, transportation pipeline trunk lines, and densely populated regions, demanding special attention. This study provides a foundational resource for disaster prevention and control strategies in Nansha District and similar coastal cities.

Funder

China Geological Survey

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3