Affiliation:
1. Department of Robotics, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
Abstract
Aerial robots, or unmanned aerial vehicles (UAVs), are widely used in 3D reconstruction tasks employing a wide range of sensors. In this work, we explore the use of wide baseline and non-parallel stereo vision for fast and movement-efficient long-range 3D reconstruction with multiple aerial robots. Each viewpoint of the stereo vision system is distributed on separate aerial robots, facilitating the adjustment of various parameters, including baseline length, configuration axis, and inward yaw tilt angle. Additionally, multiple aerial robots with different sets of parameters can be used simultaneously, including the use of multiple baselines, which allows for 3D monitoring at various depth ranges simultaneously, and the combined use of horizontal and vertical stereo, which improves the quality and completeness of depth estimation. Depth estimation at a distance of up to 400 m with less than 10% error using only 10 m of active flight distance is demonstrated in the simulation. Additionally, estimation of a distance of up to 100 m with flight distance of up to 10 m on the vertical axis and horizontal axis is demonstrated in an outdoor mapping experiment using the developed prototype UAVs.
Reference20 articles.
1. UAV for 3D mapping applications: A review;Nex;Appl. Geomat.,2014
2. Optimized views photogrammetry: Precision analysis and a large-scale case study in qingdao;Li;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2023
3. Applications of unmanned aerial vehicle (UAV) surveys and Structure from Motion photogrammetry in glacial and periglacial geomorphology;Ewertowski;Geomorphology,2021
4. Integration of Lidar system, mobile laser scanning (MLS) and unmanned aerial vehicle system for generation of 3d building model application: A review;Room;IOP Conference Series: Earth and Environmental Science,2022
5. Drone LiDAR application for 3D city model;Setyawan;J. Appl. Geospat. Inf.,2022
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献