Author:
Shah Manisha H.,Chan Elsa C.,Van Bergen Nicole J.,Pandav Surinder S.,Ng Sze,Crowston Jonathan G.,Peshavariya Hitesh M.
Abstract
Collagen accumulation in sub-conjunctival tissue at the surgical wound is one of the major complications associated with glaucoma filtration surgery (GFS). This process often leads to unwanted fibrotic scar formation at the lesion site and dysfunction of tissues. Previously, we demonstrated that NADPH oxidase 4 (Nox4) is implicated in transforming growth factor-beta (TGFβ)-induced collagen production in ocular fibroblasts and scarring responses in a mouse model of corneal injury. Here, we propose that Nox4 is an important facilitator of TGFβ-induced responses. We tested this hypothesis in human Tenon’s fibroblasts (HTF) and also assessed a role of Nox4 in an experimental mouse model of GFS. TGFβ1 induced Nox4 mRNA expression but downregulated Nox5 in HTF. Targeting Nox4 gene expression with an adenovirus carrying a Nox4 small interfering RNA (siRNA) (Ad-Nox4i) or removal of hydrogen peroxide (H2O2) with EUK-134 (25 μM) in HTFs significantly reduced TGFβ1-induced Nox4 expression, H2O2 production, and collagen synthesis (p < 0.05, n = 3–6). SIS3 (5 μM) that prevents Smad3 phosphorylation is found to suppress TGFβ1-induced collagen production in HTFs. Furthermore, Ad-Nox4i and EUK-134 both abolished TGFβ1-stimulated proliferation of HTFs. We also compared collagen deposition at the wound arising from GFS between wildtype (WT) and Nox4 knockout (KO) mice. Both collagen deposition and fibrovascularization at the wound were significantly decreased in Nox4 KO mice at 14 days after GFS. Our results provide comprehensive evidence that Nox4 is an important mediator for TGFβ1-induced responses in HTFs and collagen deposition in surgical wound following GFS in mice. As such, pharmacological inhibition of Nox4 would be a viable therapeutic strategy for the control of scarring after glaucoma surgery.
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献