Betaine and Isoquinoline Alkaloids Protect against Heat Stress and Colonic Permeability in Growing Pigs

Author:

Le Hieu HuuORCID,Shakeri Majid,Suleria Hafiz Ansar RasulORCID,Zhao Weicheng,McQuade Rachel Mai,Phillips Deborah Jayne,Vidacs Eva,Furness John BartonORCID,Dunshea Frank RowlandORCID,Artuso-Ponte Valeria,Cottrell Jeremy JamesORCID

Abstract

Heat stress (HS) compromises productivity of pork production, in part as a result of increased oxidative stress and inflammatory responses, particularly within the gastrointestinal tract. This study aimed to investigate whether plant-derived betaine and isoquinoline alkaloids could ameliorate HS in pigs. Fifty female Large White × Landrace grower pigs, which were acclimated to control (CON), control plus betaine (BET), or control plus isoquinoline alkaloids (IQA) diets for 14 days were then exposed to heat stress or thermoneutral condition. Both BET and IQA partially ameliorated increases in respiration rate (p = 0.013) and rectal temperature (p = 0.001) associated with HS conditions. Heat stress increased salivary cortisol concentrations and reduced plasma creatinine, lactate, and thyroid hormone concentrations. Heat stress increased colon FD4 permeability, which was reduced by IQA (p = 0.030). Heat stress increased inflammation in the jejunum and ileum, as indicated by elevated interleukin-1β (p = 0.022) in the jejunum and interleukin-1β (p = 0.004) and interleukin-8 (p = 0.001) in the ileum. No differences in plasma total antioxidant capacity (TAC) were observed with HS, but betaine increased plasma TAC compared to IQA. Dietary BET increased betaine concentrations in the jejunum, ileum (p < 0.001 for both), plasma, liver, kidney (p < 0.010 for all), urine (p = 0.002) and tended to be higher in muscle (p = 0.084). Betaine concentration was not influenced by HS, but it tended to be higher in plasma and accumulated in the liver. These data suggest that betaine and isoquinoline alkaloids supplementation ameliorated consequences of heat stress in grower pigs and protected against HS induced increases in colonic permeability.

Funder

AUSTRALIAN PORK LIMITED

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3