Melatonin Can Modulate the Effect of Navitoclax (ABT-737) in HL-60 Cells

Author:

Lomovsky Alexey,Baburina Yulia,Odinokova Irina,Kobyakova Margarita,Evstratova Yana,Sotnikova Linda,Krestinin Roman,Krestinina Olga

Abstract

Melatonin (N-acetyl-5-methoxytryptamine MEL) is an indolamine that has antioxidant, anti-inflammatory and anti-tumor properties. Moreover, MEL is capable of exhibiting both anti-apoptotic and pro-apoptotic effects. In the normal cells, MEL possesses antioxidant property and has an anti-apoptotic effect, while in the cancer cells it has pro-apoptotic action. We investigated the combined effect of MEL and navitoclax (ABT-737), which promotes cell death, on the activation of proliferation in acute promyelocytic leukemia on a cell model HL-60. The combined effect of these compounds leads to a reduction of the index of mitotic activity. The alterations in the level of anti- and pro-apoptotic proteins such as BclxL, Bclw, Mcl-1, and BAX, membrane potential, Ca2+ retention capacity, and ROS production under the combined action of MEL and ABT-737 were performed. We obtained that MEL in combination with ABT-737 decreased Ca2+ capacity, dropped membrane potential, increased ROS production, suppressed the expression of anti-apoptotic proteins such as BclxL, Bclw, and Mcl-1, and enhanced the expression of pro-apoptotic BAX. Since, MEL modulates autophagy and endoplasmic reticulum (ER) stress in cancer cells, the combined effect of MEL and ABT-737 on the expression of ER stress and autophagy markers was checked. The combined effect of MEL and ABT-737 (0.2 μM) increased the expression of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), leading to a decrease in the level of binding immunoglobulin protein (BIP) followed by an increase in the level of C/EBP homologous protein (CHOP). In this condition, the expression of ERO1 decreased, which could lead to a decrease in the level of protein disulfide isomerase (PDI). The obtained data suggested that melatonin has potential usefulness in the treatment of cancer, where it is able to modulate ER stress, autophagy and apoptosis.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3