Heme-Iron-Induced Production of 4-Hydroxynonenal in Intestinal Lumen May Have Extra-Intestinal Consequences through Protein-Adduct Formation

Author:

Keller Julia,Chevolleau Sylvie,Noguer-Meireles Maria-Helena,Pujos-Guillot Estelle,Delosière Mylène,Chantelauze Céline,Joly CharlotteORCID,Blas-y-Estrada Florence,Jouanin Isabelle,Durand DenysORCID,Pierre Fabrice,Debrauwer Laurent,Theodorou Vassilia,Guéraud FrançoiseORCID

Abstract

Some epidemiological studies show that heme iron consumption, in red meat, is associated to the development of several chronic diseases, including cancers and cardio-metabolic diseases. As heme iron intestinal absorption is finely regulated, we hypothesized that heme iron may act indirectly, through the peroxidation of dietary lipids, in food or in the intestinal lumen during digestion. This heme-iron-induced lipid peroxidation provokes the generation of toxic lipid oxidation products that could be absorbed, such as 4-hydroxynonenal (HNE). In a first experiment, heme iron given to rats by oral gavage together with the linoleic-acid-rich safflower oil induced the formation of HNE in the intestinal lumen. The HNE major urinary metabolite was elevated in the urine of the treated rats, indicating that this compound has been absorbed. In a second experiment, we showed that stable isotope-labeled HNE given orally to rats was able to reach non-intestinal tissues as a bioactive form and to make protein-adducts in heart, liver and skeletal muscle tissues. The presence of HNE-protein adducts in those tissues suggests a putative biological role of diet-originating HNE in extra-intestinal organs. This finding could have major consequences on the onset/development of chronic diseases associated with red meat over-consumption, and more largely to peroxidation-prone food consumption.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3