Novel Computations of the Time-Fractional Coupled Korteweg–de Vries Equations via Non-Singular Kernel Operators in Terms of the Natural Transform

Author:

Alzahrani Abdulrahman B. M.1,Alhawael Ghadah2

Affiliation:

1. Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Basic Sciences, Common First Year Deanship, King Saud University, P.O. Box 145111, Riyadh 11362, Saudi Arabia

Abstract

In the present research, we establish an effective method for determining the time-fractional coupled Korteweg–de Vries (KdV) equation’s approximate solution employing the fractional derivatives of Caputo–Fabrizio and Atangana–Baleanu. KdV models are crucial because they can accurately represent a variety of physical problems, including thin-film flows and waves on shallow water surfaces. Some theoretical physical features of quantum mechanics are also explained by the KdV model. Many investigations have been conducted on this precisely solvable model. Numerous academics have proposed new applications for the generation of acoustic waves in plasma from ions and crystal lattices. Adomian decomposition and natural transform decomposition techniques are combined in the natural decomposition method (NDM). We first apply the natural transform to examine the fractional order and obtain a recurrence relation. Second, we use the Adomian decomposition approach to the recurrence relation, and then, using successive iterations and the initial conditions, we can establish the series solution. We note that the proposed fractional model is highly accurate and valid when using this technique. The numerical outcomes demonstrate that only a small number of terms are required to arrive at an approximation that is exact, efficient, and trustworthy. Two examples are given to illustrate how the technique performs. Tables and 3D graphs display the best current numerical and analytical results. The suggested method provides a series form solution, which makes it quite easy to understand the behavior of the fractional models.

Funder

King Saud University, Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3