PointNAC: Copula-Based Point Cloud Semantic Segmentation Network

Author:

Deng Chunyuan1,Chen Ruixing1ORCID,Tang Wuyang2,Chu Hexuan1,Xu Gang3,Cui Yue3,Peng Zhenyun1

Affiliation:

1. School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Computer Vision Laboratory, Advanced Manufacturing Institute, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

Abstract

Three-dimensional point cloud data generally contain complex scene information and diversified category structures. Existing point cloud semantic segmentation networks tend to learn feature information between sampled center points and their neighboring points, while ignoring the scale and structural information of the spatial context of the sampled center points. To address these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula feature enhancement), a network designed for point cloud semantic segmentation in large-scale complex scenes, which consists of the following two main modules: (1) The local stereoscopic feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and angles calculated based on the cosine theorem, enabling the network to learn not only the spatial positional information of the point cloud but also the spatial scale and geometric structure; and (2) the copula-based similarity feature enhancement module. Based on the stereoscopic feature information, this module analyzes the correlation among points in the local neighborhood. It enhances the features of positively correlated points while leaving the features of negatively correlated points unchanged. By combining these enhancements, it effectively enhances the feature saliency within the same class and the feature distinctiveness between different classes. The experimental results show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union (MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results of other network models on public datasets, our algorithm demonstrates good generalization and segmentation capabilities.

Funder

Ningbo Science and Technology Innovation Project

Innovation Project of GUET Graduate Education

Innovation Project of Guangxi Graduate Education, China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3