Self-Supervised Spatiotemporal Masking Strategy-Based Models for Traffic Flow Forecasting

Author:

Liu Gang1,He Silu2ORCID,Han Xing2,Luo Qinyao2,Du Ronghua3,Fu Xinsha4,Zhao Ling2ORCID

Affiliation:

1. China Academy of Electronic Information Technology, Beijing 100041, China

2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

3. College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China

4. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China

Abstract

Traffic flow forecasting is an important function of intelligent transportation systems. With the rise of deep learning, building traffic flow prediction models based on deep neural networks has become a current research hotspot. Most of the current traffic flow prediction methods are designed from the perspective of model architectures, using only the traffic features of future moments as supervision signals to guide the models to learn the spatiotemporal dependence in traffic flow. However, traffic flow data themselves contain rich spatiotemporal features, and it is feasible to obtain additional self-supervised signals from the data to assist the model to further explore the underlying spatiotemporal dependence. Therefore, we propose a self-supervised traffic flow prediction method based on a spatiotemporal masking strategy. A framework consisting of symmetric backbone models with asymmetric task heads were applied to learn both prediction and spatiotemporal context features. Specifically, a spatiotemporal context mask reconstruction task was designed to force the model to reconstruct the masked features via spatiotemporal context information, so as to assist the model to better understand the spatiotemporal contextual associations in the data. In order to avoid the model simply making inferences based on the local smoothness in the data without truly learning the spatiotemporal dependence, we performed a temporal shift operation on the features to be reconstructed. The experimental results showed that the model based on the spatiotemporal context masking strategy achieved an average prediction performance improvement of 1.56% and a maximum of 7.72% for longer prediction horizons of more than 30 min compared with the backbone models.

Funder

Major Program Project of Xiangjiang Laboratory

National Natural Science Foundation of China

High-Performance Computing Platform of Central South University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3