Origin of Giant Rashba Effect in Graphene on Pt/SiC

Author:

Rybkina Anna1ORCID,Gogina Alevtina1,Tarasov Artem1ORCID,Xin Ye12,Voroshnin Vladimir13,Pudikov Dmitrii4ORCID,Klimovskikh Ilya5,Petukhov Anatoly4ORCID,Bokai Kirill1,Yuan Chengxun2,Zhou Zhongxiang2,Shikin Alexander1,Rybkin Artem6ORCID

Affiliation:

1. Department of Physics, Saint Petersburg State University, 198504 St. Petersburg, Russia

2. School of Physics, Harbin Institute of Technology, Harbin 150001, China

3. Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany

4. Resource Center “Physical Methods of Surface Investigation”, Research Park, Saint Petersburg State University, 198504 St. Petersburg, Russia

5. Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain

6. Laboratory of Electronic and Spin Structure of Nanosystems, Saint Petersburg State University, 198504 St. Petersburg, Russia

Abstract

Intercalation of noble metals can produce giant Rashba-type spin–orbit splittings in graphene. The spin–orbit splitting of more than 100 meV has yet to be achieved in graphene on metal or semiconductor substrates. Here, we report the p-type graphene obtained by Pt intercalation of zero-layer graphene on SiC substrate. The spin splitting of ∼200 meV was observed at a wide range of binding energies. Comparing the results of theoretical studies of different models with the experimental ones measured by spin-ARPES, XPS and STM methods, we concluded that inducing giant spin–orbit splitting requires not only a relatively close distance between graphene and Pt layer but also the presence of graphene corrugation caused by a non-flat Pt layer. This makes it possible to find a compromise between strong hybridization and increased spin–orbit interaction. In our case, the Pt submonolayer possesses nanometer-scale lateral ordering under graphene.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3