Affiliation:
1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract
This paper proposes a new cover selection method for steganography. We focus on the scenario that the available images for selection contain diversified sources, i.e., nature images and metaverse images. For the scenario, we design a targeted strategy to evaluate the suitability for steganography of a candidate image, which selects images according to the undetectability against steganalytic tools symmetrically. Firstly, steganalytic features of the candidate images are extracted. Then, the features are fed on a steganalytic classifier, and the possibility of carrying secret data is calculated for cover selection. As a result, the selected images are the best candidates to resist steganalysis. Experimental results show that our method performs better than existing cover selection schemes when checked by steganalytic tools.
Funder
National Natural Science Foundation of China
Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献